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a b s t r a c t

Various properties of turbulence are discussed with a perspective of their influence on turbulence mod-
elling (TM). The paper considers the relation between spectral properties and TM, the inherent errors
associated with TM, the distinction between modelling and numerical errors, local and global processes
in turbulence development, the influence of dimensionality on applicability of various models, the poten-
tial of LES, and wall proximity corrections.

The emphasis is on understanding when and why TM works, not on demonstrative results.
� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulence has been defined often as a 3D unsteady random
rotational motion. The turbulent flow field is composed of many
structures (or eddies) of various scales. Kolmogorov [1] hypothe-
sized that a small eddy range exists, where dissipation of mechan-
ical energy to thermal energy occurs. It follows (e.g. Tennekes and
Lumley [2]) that vortex stretching generates energy transfer from
the mean flow to large eddies, and then to smaller and smaller ed-
dies, until the eddies are so small that they dissipate by viscosity.
This is often referred to as the ‘‘cascade” of energy. Spectral mea-
surements of this flow of energy verified the hypothesis and
showed that when the Reynolds number is high the spectral do-
main can be divided to three sub-ranges:

1. The large eddies in which the flow is non viscous. Convection,
diffusion and production of turbulence occur in the large eddies.
This range is often referred to as energy carrying range.

2. The small eddies are viscous and tend to isotropy. Viscous dis-
sipation occurs in the small eddies.

3. Between the large energy carrying and the small dissipative
eddies lies the inertial sub-range. All the energy supplied to this
sub-range from the large eddies is transferred by the cascade
mechanism to the small eddies range where it is dissipated to
thermal energy.

The consequence of the existence of the inertial zone is that the
dissipation is a major characteristic of the turbulence in all three
regions. The assumption of isotropy of the turbulence in the vis-
cous region allows analytical approaches to turbulence modelling
ll rights reserved.
in this region. Moreover, the existence of the inertial region allows
simpler modelling of the turbulence in the energy carrying region.
Even if the large eddies are solved using LES, the existence of the
inertial region facilitates better modelling of the SGS region in
LES (in high Reynolds numbers).

Another useful distinction is between local and global pro-
cesses. Convection and diffusion of turbulence energy transfer tur-
bulent properties from one location to another in space. However,
they do not increase or decrease the amount of turbulences in the
entire flow field. Therefore convection and diffusion may be con-
sidered ‘‘global” processes. On the other hand, production and dis-
sipation produce or destroy turbulence locally, and they may be
considered ‘‘local” processes. Another important process is the
transfer of energy between different components of the Reynolds
stress by turbulent pressure–strain interaction. This process is lo-
cal as well. Global processes are always differential, in the sense
that their influence can be predicted only by the solution of differ-
ential equations. Local processes are algebraic, or at most, differen-
tial of lower order. Their influence is usually calculated by
algebraic equations (or simple differential equations). This distinc-
tion is often used to explain various turbulent mechanisms and to
assist in the modelling process.

The aim of the present paper is to see how these ideas may help
the developer and user of turbulence models.

2. The limits of turbulence modelling

Usually theoretical treatment of turbulence depends on the
assumption that all turbulent fluctuations are governed by the Na-
vier–Stokes equations. This assumption is justified if the contin-
uum hypothesis and the Stokes stress–strain relation hold even
for the smallest turbulent structures. The validity of the continuum
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is discussed in many texts. Here we summarize the treatment of Tennekes and Lumley. Their argument is based on estimates of the various
scales of turbulence and is summarized in the following table:
Mean motion
 Large turbulent fluctuations
 Small turbulent fluctuations
 Molecular motion
Length
 L
 Lt ¼ k3=2
=e
 LKol ¼ m3=4=e1=4
 Lmfp ¼ m=a
Time
 L/U
 Tt = k/effiffiffip
 TKol ¼ m1=4=e1=2
Velocity
 U
 q ¼ kffiffip 2

uKol ¼ m1=4e1=4
Reynolds
number
RE ¼ UL
m
 Rt ¼ L k

m ¼ k
me
 RKol = 1
Mach
number
M = U/a
 M t ¼
ffiffiffi
k
p

=a
Normalizers
 L, U
 k, e
 m, e
where k is the turbulence energy, e is the dissipation, m is the kinematic viscosity and a is the speed of sound.
The ratio of the mean free path to the Kolmogoroff length scale has been represented in the form of a Knudsen number:

Kn ¼
Lmfp

Lk
¼ me1=4

am3=4 ¼
m1=4e1=4

a
¼ M t

m1=4e1=4

k2=4 ¼ M t

Re1=4 ¼
MTu

Re1=4 ð1Þ

The Knudsen number grows with the Mach number and the turbulence level (Tu) and it decreases with the Reynolds number. Typical numer-
ical values are given in the following table:

Knudsen number of the dissipative scales
Tu
 0.2

M
 0.1
 0.2
 0.5
 1
 2
 5

Re
1.E+03
 3.56E�03
 7.11E�03
 1.78E�02
 3.56E�02
 7.11E�02
 1.78E�01

5.E+03
 2.38E�03
 4.76E�03
 1.19E�02
 2.38E�02
 4.76E�02
 1.19E�01

1.E+04
 2.00E�03
 4.00E�03
 1.00E�02
 2.00E�02
 4.00E�02
 1.00E�01

2.E+04
 1.68E�03
 3.36E�03
 8.41E�03
 1.68E�02
 3.36E�02
 8.41E�02

5.E+04
 1.34E�03
 2.67E�03
 6.69E�03
 1.34E�02
 2.67E�02
 6.69E�02

1.E+05
 1.12E�03
 2.25E�03
 5.62E�03
 1.12E�02
 2.25E�02
 5.62E�02

2.E+05
 9.46E�04
 1.89E�03
 4.73E�03
 9.46E�03
 1.89E�02
 4.73E�02

5.E+05
 7.52E�04
 1.50E�03
 3.76E�03
 7.52E�03
 1.50E�02
 3.76E�02

1.E+06
 6.32E�04
 1.26E�03
 3.16E�03
 6.32E�03
 1.26E�02
 3.16E�02

2.E+06
 5.32E�04
 1.06E�03
 2.66E�03
 5.32E�03
 1.06E�02
 2.66E�02

5.E+06
 4.23E�04
 8.46E�04
 2.11E�03
 4.23E�03
 8.46E�03
 2.11E�02

1.E+07
 3.56E�04
 7.11E�04
 1.78E�03
 3.56E�03
 7.11E�03
 1.78E�02

2.E+07
 2.99E�04
 5.98E�04
 1.50E�03
 2.99E�03
 5.98E�03
 1.50E�02

5.E+07
 2.38E�04
 4.76E�04
 1.19E�03
 2.38E�03
 4.76E�03
 1.19E�02

1.E+08
 2.00E�04
 4.00E�04
 1.00E�03
 2.00E�03
 4.00E�03
 1.00E�02
It is apparent that only when the Mach number becomes very large
and the Reynolds number becomes small the Knudsen becomes
large enough to make continuum assumption problematic. There-
fore turbulence may be regarded as a continuum in most cases.
When using the Stokes stress–strain relations is justified, the Na-
vier–Stokes equations represent turbulent flow correctly even in
the smallest dissipative scales.

Now we need to consider existence and uniqueness of the solu-
tion. There is no general proof of existence of solution to the Na-
vier–Stokes equations. However, if we consider a flow which has
been observed experimentally we may assume, on the basis of
the previous conclusion that the equations do represent turbulent
flows, that a solution exists to the actual problem considered.
Uniqueness cannot be proven, and similarity to the experiment
would be sufficient for the present argument.

The Navier–Stokes equations constitute a set of partial differen-
tial equations of mixed character: parabolic for the velocity com-
ponents (and the temperature if used) and hyperbolic for the
pressure or density. The requirements for boundary and initial con-
ditions are known for such systems, and when all the required con-
ditions are specified the problem is well specified. Under-
specification results in an infinite number of solutions and over-
specification cannot produce any solution. In other words, if we
specify all the required conditions no new information is allowed.
This conclusion applies to the fluctuating flow, but it must be valid
for the mean equations as well.

Here we face a major problem: usually we are interested in the
mean properties of the flow field, not the time-dependent fluctua-
tions. However, the averaging process causes loss of information
and addition of yet unknown correlations to the mean equations.
Obviously these correlations depend on the lost information which
is a part of the existing, although not known, solution of the fluc-
tuating Navier–Stokes equations. In other words, the specification
of the mean equations lacks some information, but this informa-
tion is still a part of the solution of the fluctuating equations, which
were well defined. Consequently, the only legitimate way to calcu-
late the information lost by the averaging process is from the fluc-
tuating solution which we do not know.

In other words, the full fluctuating time-dependent equations
constitute a well-defined system of equations and as such we are
not allowed to add any additional conditions or equations to those
required to solve the original set of the Navier–Stokes equations
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and their initial and boundary conditions. Turbulence modelling is
exactly such an addition. Therefore, we do not solve the equations
governing the flow field, but a new system with a different solu-
tion. Of course this argument applies only to the modelled equa-
tions not to exact equations like the exact, un-modelled
equations for the turbulent correlations used. As we do not know
the exact solution of the fluctuating Navier–Stokes equations we
cannot calculate, or even estimate the difference between the solu-
tion of the turbulence model and the solution of the Navier–Stokes
equations. Therefore we cannot set bounds on the error cause by
the turbulence model, and it is always necessary to validate the
model, and the validation is relevant only to validated flows.

In this situation turbulence modelling cannot be considered as
tool to explore new problems, but as a smart interpolation tech-
nique between measurements.

But are measurements exact? Not necessarily, firstly due to
experimental errors. But another very important problem is that
often the experimental boundary conditions or even problem
parameters cannot be reproduced in the laboratory. Thus both
numerical (with turbulence models) and experimental studies
are required, and if they are carefully checked and compared to
one another they can yield reliable results for engineering (and
with caution) to general problems.

In conclusion it is suggested that we should humbly realize that
there is no such thing as a ‘‘fully universal turbulence model”,
although turbulence models are an essential tool for the practicing
engineer until such days when exact numerical solution of the un-
steady three-dimensional Navier–Stokes equations become feasi-
ble for any Reynolds number and geometry.

3. On computational errors

In general computational results are prone to some types of er-
rors. All types of errors are usually checked by comparison to
experimental results. However, it is necessary to identify the exact
cause of the error in order to find the cause and rectify it. The com-
mon types of error are:

1. Lack of numerical convergence, by insufficient number of steps
or iterations. Careful computation overcomes such problems by
running to round-off errors. Sometimes it is necessary to use
augmented precision to avoid this problem.

2. Numerical instability, disabling a stable solution (this may
affect even time-dependent solutions). Such problems may be
difficult to identify, and their solution may require some previ-
ous experience.

3. Lack of mathematical convergence, when the exact numerical
solutions (of say, the discrete equations) is different from the
exact solution of the mathematical equations. This type of error
is usually caused by insufficient resolution. Identification of
such problems can be easily done using the Richardson extrap-
olation. However, for large and/or complicated problems one
may be limited by the computing resources available.

4. Modelling error, caused by the approximations used during the
modelling process. This type of error can be identified only after
the first three types (numerical and mathematical) errors have
been eliminated. This type of error is different from the previ-
ous types of error, firstly because it can be identified only after
the other possibilities were eliminated, and secondly because
there is no standard technique to identify it apart from compar-
ison with experimental data (or reliable computations, e.g.
DNS). The easiest way to verify a model is by comparison with
experimental data for simple cases which do not require large
computer resources. Typically two-dimensional parabolic flows
are often used to do this. However, sometimes even a boundary
layer solution may be too demanding. The easiest less demand-
ing problems are those of self-similar flow, where only ODEs are
solved, and therefore the need for computer resources is mini-
mized. Free shear layers are a possibility here, because they
usually reach self-similarity. However, many modelling prob-
lems are caused by the influence of walls, which are absent
from free shear layers. Recently Wolfshtein [3] suggested to
use solutions of self-similar boundary layers as test problems
for turbulence modelling.

Usually self-similar solutions of turbulent boundary layers are
impossible due to the different scaling methodology of the inner
and outer parts of the boundary layer. However, it was found
that when the boundary layer is subject to additional constrains
(e.g. injection from the wall) a self-similar solution is possible.
Combined experimental/numerical research program of such
problems may improve the verification process of turbulence
models.

4. Characterization of turbulent flows

In this section we examine the suitability of various classes of
turbulence models to various classes of problems.

The first classification is between local (often referred to as
algebraic) and global models, as explained below. The first turbu-
lence model published must have been the Prandtl Mixing Length
(1925). It is usually referred to as an algebraic model, because no
PDE is solved in order to enable the closure of the equations. In
due course various algebraic models were developed due to their
lower demands on computational resources. The ASM model for
the ratios of the Reynolds stress to the turbulence energy probably
stretched this class of models more than any, as it still requires
PDEs for the turbulent energy and dissipation, but not for the Rey-
nolds stresses themselves. Algebraic models are generated by elim-
ination of the transport processes (convection and diffusion) from
the PDE. Thus the equation becomes algebraic rather than differen-
tial. Consequently the calculated property depends only on local
conditions.

The consequence of this ‘‘locality” is that the state of a fluid par-
ticle in an arbitrary location within the local region does not de-
pend on the history of the particle along its path before it
reached its current location. Local modelling is very useful for ver-
ification of models and determination of empirical constants re-
quired to complete a model.

Another kind of classification is ‘‘dimensionality”, which is the
number of turbulent stresses relevant in any point in the flow field.
This classification is relevant to any eddy viscosity model. The clas-
sification is based on the fact that the proportionality coefficient
required for a general linear relation between two second order
tensor (the stress and the strain) is a fourth order tensor. It is there-
fore clear that a general scalar eddy viscosity cannot be used in a
general case. To illustrate the point we consider a steady 2D
incompressible flow field. The momentum equations (neglecting
viscous diffusion) are then:
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Indeed three different turbulent viscosities are required to obtain a
reasonable solution. Yet, if the case considered is such that only the
y-derivative is required (as happens in all 2D parabolic flows) the
problem disappears and we can obtain a scalar eddy viscosity from
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the experimental data, and then it is often possible to devise some
theoretical model which agrees with the data.

The above argument is valid even for full 2D flows if the condi-
tion of a single flux direction is valid at least locally. We shall de-
fine such a condition as ‘‘pseudo 1D”. For instance, in a back-
facing step flow, the condition may be met near the two walls,
and also in the mixing layer separating the recirculation bubble
from the main flow. The condition is not satisfied in the middle
of the bubble itself, but the stresses there are usually small and
the associated errors in the bubble do not affect the important fea-
tures of the solution. Similar arguments apply to full 3D cases as
well.

In conclusion, we may define four different environments by
considering history effects and locality effects, as follows:
Local
 Global
Pseudo 1D
 Algebraic eddy
viscosity models
Differential eddy
viscosity models
Multi-dimensional
 ASM models
(but with k and
epsilon PDEs)
Reynolds stress models
5. DNS and LES

In view of the inherent difficulties to define accuracy and error
bounds of turbulence models theoretically, Direct Numerical Sim-
ulation gas been proposed. As the Navier–Stokes equations repre-
sent the flow field completely, we may solve the NS equations
numerically, and then process and study the time-dependent solu-
tion using statistical methods. However, it has been recognized
that the required computing resources increase steeply with Rey-
nolds number and therefore DNS can be used only for low Reynolds
number cases, until available computer power increases dramati-
cally. The reason is the high spread of size of turbulent structures
between the large energy carrying structures and the very fine dis-
sipative structures. Very fine discretization of the flow field is re-
quired to overcome this spread, with very high demands on
computer storage and computer time.

A cure to this problem was proposed by Large Eddy Simulation.
As the dissipative eddies are isotropic, and as the inertial region
does not cause important changes in the properties of the turbu-
lence, it appears desirable to separate the regions. The properties
of the dissipative range can be calculated using a special turbu-
lence model which can be relatively simple due to the isotropy
of the range. Then the expensive discretization may be applied to
the large structure range, with large savings in computer resources.
Unfortunately, this idea is applicable only to cases in which the
inertial range exists. This is not the case for low Reynolds numbers,
and in particular to the flow in the immediate vicinity of solid
walls. In these regions it is often necessary to refine the discretiza-
tion and the efficiency improvement of LES over DNS deteriorates.
Current efforts are directed towards a combination of conventional
turbulence modelling near walls coupled with LES away from
walls, taking advantage of the fact that the flow near solid walls
is parabolic, and as such it is less demanding computationally. It
is the opinion of the author that this approach can reduce the
inherent theoretical obstacles of turbulence modelling, but it can-
not remove them completely.

6. A few comments on boundary layers and wall functions

The concept of wall functions is based on the idea that the flow
near the wall is one-dimensional: all properties change only in the
wall-normal direction. It follows that the gradients in the direc-
tions parallel to the wall vanish. However this requirement is ex-
actly satisfied only in very few cases like Couette flow or pipe
and duct flows. In other cases the requirement is satisfied only
on the wall, and as the point in question gets further away from
the wall the one-dimensionality deteriorates.

Thus the one-dimensionality assumption may be reasonable
only in a narrow layer close to the wall. If this layer is thicker than
the viscous sub-layer one may use one-dimensional distribution in
this layer to bridge the gap between the boundary conditions spec-
ified on the wall and any discrete solution obtained numerically.
Whether this distribution is obtained experimentally or analyti-
cally is irrelevant.

The most common such distribution is the logarithmic law of
the wall and its derivatives. The distribution is obtained from the
assumption that the one-dimensional layer protrudes into the tur-
bulent region, beyond the viscous sub-layer. Then it is easy to see
that the total shear stress is constant for zero pressure gradient
flow or linear for flows with pressure gradient. The logarithmic
law is then obtained by exact solution of any turbulence model (in-
deed this is often the most important test for any new model). Sim-
ilar techniques can be used to obtain exact solution for more
complicated cases like flows with pressure gradient, flows with
mass injection from the wall, or compressible flows. In particular
a logarithmic distribution can be proven if we assume the a bound-
ary layer can be split into three layers: an inner layer normalized
by the friction velocity and the viscosity, an outer layer normalized
by the free stream velocity, the boundary layer thickness and the
skin friction, and an overlap layer where both sets of normalizing
quantities are valid. It is easy to show that if such an overlap layer
exists, the velocity profile there must be logarithmic.

However, the assumption of uniform or linear shear is even
more problematic then that of one-dimensionality near the wall.
Thus all such solutions are only approximations. Therefore one
cannot disqualify other assumptions. In recent years various
authors suggested to use power law velocity profiles. There is no
theoretical justification to such profiles, but in view of the many
approximations used to obtain the logarithmic profiles (even the
boundary layer approximation is exact only at infinite Reynolds
number) the power law profile cannot be discarded. Indeed it is
not difficult to replace one by the other by fitting the velocity
and velocity gradient at any selected point. Both profiles are math-
ematically poor in the sense that the logarithmic profile is singular
at the wall in both the velocity and the velocity gradient, while the
power law profile is singular only in the velocity gradient at the
wall. Therefore the power law profile may be more convenient
for certain applications.

The actual derivation of the wall functions follows from the
choice of the velocity profile and is not discussed here. However,
one should bear in mind that the wall functions approach and its
origin, the assumption of one-dimensionality, are exact only in
infinite Reynolds numbers. For low Reynolds numbers various
empirical corrections are applied near the wall. This is true also
for the ‘‘down to the wall” solution where wall functions are not
used. Instead the model equations are modified near the walk so
that their solution agrees with the one-dimensional solution.

7. Conclusions

The major worry about turbulence modelling is that one cannot
estimate the errors of the computer results. Indeed, it is impossible
even to define error bounds. However, there is no better way to
calculate turbulent flows unless we deal with very low Reynolds
numbers and simple geometries. This may change in the future
with improvements in computer technology, but any predictions
here may be very risky. It is true that the ‘‘Moore law” for increase
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in computing power was successful for many years, but today it is
often claimed that future advancement in computer technology
will depend on the development of entirely new technologies,
which are difficult to predict.

One could use experimental data instead, but this is an expen-
sive and slow process, and it has its own problems, like imitation of
far field boundary conditions and agreement with all relevant
parameters (e.g. it is almost impossible to run a wind tunnel test
with the actual Reynolds and Mach numbers).

Another important issue is the identification of numerical ver-
sus modelling errors. This is particularly relevant for large prob-
lems where mesh refinement may be prohibitively expensive.

What is the answer then? Unfortunately it is still the old tra-
ditional answer: one should exercise caution and compare infor-
mation from various sources: experimental, numerical,
theoretical and industrial. In this sense prediction of turbulent
flow is still an art. Although it is relatively easy to get a solution
to most problems, it is very difficult to assign a reliability index to
such a solution. There is still no substitute to thorough profes-
sional understanding and experience. However, when these qual-
ities are properly applied the results may be rewarding and
useful, to the extent that many, if not most designers would wish
to have a numerical solution as a part of their project
development.
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